![]() |
JOURNAL TOOLS |
Opzioni di pubblicazione |
eTOC |
Per abbonarsi |
Sottometti un articolo |
Segnala alla tua biblioteca |
ARTICLE TOOLS |
Estratti |
Permessi |
Share |

I TUOI DATI
I TUOI ORDINI
CESTINO ACQUISTI
N. prodotti: 0
Totale ordine: € 0,00
COME ORDINARE
I TUOI ABBONAMENTI
I TUOI ARTICOLI
I TUOI EBOOK
COUPON
ACCESSIBILITÀ
ORIGINAL ARTICLES Free access
Europa Medicophysica 2007 September;43(3):345-8
Copyright © 2007 EDIZIONI MINERVA MEDICA
lingua: Inglese
MEG mapping in multiple sclerosis patients
Kotini A., Anninos P., Tamiolakis D.
1 Laboratory of Medical Physics, Medical School Democritus University of Thrace, Alexandroupolis, Greece 2 Department of Cytology General Hospital of Chania, Crete, Greece
Aim. The research over the past decade suggests that multiple sclerosis (MS) is a disease due to disorders of the immune system. Since the immune system is regulated by the pineal gland, which exerts immunomodulatory action with the secretion of melatonin and profound effects on electrical activity in the hippocampus, cerebellum and reticular formation structures, we have used magnetoencephalogram (MEG) recordings from MS patients in order to find any differentiation in brain activity in comparison with controls.
Methods. Ten MS patients and 10 controls were included in this study. The measurements were performed with a superconducting quantum interference device (SQUID) in an electrically shielded room. For each patient the magnetic activity was recorded from a total of 32 points of the skull as defined by a recording reference system, which is based on the International 10-20 Electrode Placement System.
Results. The biomagnetic signals (waveforms) were expressed in terms of magnetic power spectral amplitudes in the frequency range of 2-7 Hz. Some of the recorded points were observed to exhibit abnormal rhythmic activity, characterized by lower amplitudes and frequencies compared with controls. Using the MEG brain activity we were able to obtain a mapping technique characterized by the ISO-spectral amplitude of scalp distribution.
Conclusion. This study, although preliminary, presents a novel approach for measuring brain biomagnetic activity from MS patients.