![]() |
JOURNAL TOOLS |
Opzioni di pubblicazione |
eTOC |
Per abbonarsi |
Sottometti un articolo |
Segnala alla tua biblioteca |
ARTICLE TOOLS |
Estratti |
Permessi |
Per citare questo articolo |
Share |

I TUOI DATI
I TUOI ORDINI
CESTINO ACQUISTI
N. prodotti: 0
Totale ordine: € 0,00
COME ORDINARE
I TUOI ABBONAMENTI
I TUOI ARTICOLI
I TUOI EBOOK
COUPON
ACCESSIBILITÀ
ORIGINAL ARTICLES EXERCISE PHYSIOLOGY AND BIOMECHANICS
The Journal of Sports Medicine and Physical Fitness 2015 November;55(11):1329-35
Copyright © 2015 EDIZIONI MINERVA MEDICA
lingua: Inglese
A hierarchical model of factors influencing a battery of agility tests
Naylor J., Greig M. ✉
Sports Injuries Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
AIM: The aim of this study was to investigate the hierarchical contributions of anthropometry, strength and cognition to a battery of prescriptive and reactive agility tests.
METHODS: Nineteen participants (mean±S.D.; age:22.1±1.9 years; height: 182.9±5.5 cm; body mass: 77±4.9 kg) completed four agility tests: a prescriptive linear sprint, a prescriptive change-of-direction sprint, a reactive change-of-direction sprint, and a reactive linear deceleration test. Anthropometric variables included body fat percentage and thigh girth. Strength was quantified as the peak eccentric hamstring torque at 180, 300, and 60°·s-1. Mean reaction time and accuracy in the Stroop word-colour Test was used to assess perceptual and decision making factors.
RESULTS: There was little evidence of intertest correlation with the strongest relationship observed between 10 m sprint and t-test performance (r2=0.49, P<0.01). Anthropometric measures were not strong predictors of agility, accounting for a maximum 23% (P=0.12) in the prescriptive change-of-direction test. Cognitive measures had a stronger correlation with the reactive (rather than prescriptive) agility tests, with a maximum 33% (P=0.04) of variance accounted for in the reactive change-of-direction test. Eccentric hamstring strength accounted for 62% (P=0.01) of the variance in the prescriptive change-of-direction test. Hierarchical ordering of the agility tests revealed that eccentric hamstring strength was the primary predictor in 3 of the 4 tests, with cognitive accuracy the next most common predictor.
CONCLUSION: There is little evidence of inter-test correlation across a battery of agility tests. Eccentric hamstring strength and decision making accuracy are the most common predictors of agility performance.