Home > Riviste > The Journal of Sports Medicine and Physical Fitness > Fascicoli precedenti > Articles online first > The Journal of Sports Medicine and Physical Fitness 2021 Jan 20

ULTIMO FASCICOLO
 

JOURNAL TOOLS

eTOC
Per abbonarsi
Sottometti un articolo
Segnala alla tua biblioteca
 

ARTICLE TOOLS

Publication history
Estratti
Permessi
Per citare questo articolo
Share

 

 

The Journal of Sports Medicine and Physical Fitness 2021 Jan 20

DOI: 10.23736/S0022-4707.21.11647-0

Copyright © 2021 EDIZIONI MINERVA MEDICA

lingua: Inglese

Effect of endurance training on copper, zinc, iron and magnesium status

Gurseen RAKHRA, Daisy MASIH, Annu VATS, Saroj K. VERMA, Vijay K. SINGH, Vandana KIRAR, Som N. SINGH

Nutrition Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India


PDF


BACKGROUND: Physical activity related energy expenditure, environmental stresses, body composition, dietary intake etc. are key factors influencing the nutritional requirements of minerals.
AIM: The present study was designed to study the nutritional status of metals with respect to extensive endurance training.
METHODS: The participants of the study were Navy sailors (n=37, mean age ± SD: 25.2 ± 4.8 y) undergoing one month of endurance training. Nutritional status was assessed by determining their body composition using bioelectrical impedance (BIA), food intake and urinary excretion levels. Fasting blood samples were taken to separate plasma and red blood cells for analysis of copper, zinc, magnesium and iron and certain metal dependent enzymatic biomarkers.
RESULTS: Endurance training significantly decreased the plasma levels of copper (p<0.01), zinc and iron (p<0.05) while in erythrocytes a significant (p<0.001) decrease was observed only for Mg and Zn. There was a concomitant increase (p<0.05) in urinary Zn excretion. In addition, the concentrations of certain metal dependent enzymatic biomarkers like RBC metallothionein (p<0.05) and carbonic anhydrase (p<0.01) (Zn biomarker), plasma ferritin (Fe biomarker)
(p<0.001) and RBC Mg ATPase (Mg biomarker) (p<0.05) decreased after physical activity.
CONCLUSIONS: The findings of study suggest the increased requirements of these minerals during physical activity.


KEY WORDS: Energy expenditure; Body composition; Nutritional status; Dietary intake

inizio pagina