![]() |
JOURNAL TOOLS |
Opzioni di pubblicazione |
eTOC |
Per abbonarsi |
Sottometti un articolo |
Segnala alla tua biblioteca |
ARTICLE TOOLS |
Estratti |
Permessi |
Share |


I TUOI DATI
I TUOI ORDINI
CESTINO ACQUISTI
N. prodotti: 0
Totale ordine: € 0,00
COME ORDINARE
I TUOI ABBONAMENTI
I TUOI ARTICOLI
I TUOI EBOOK
COUPON
ACCESSIBILITÀ
RADIOPHARMACOLOGY
The Quarterly Journal of Nuclear Medicine 2001 June;45(2):139-52
Copyright © 2009 EDIZIONI MINERVA MEDICA
lingua: Inglese
Brain radioligands - State of the art and new trends
Halldin C., Gulyás B., Langer O., Farde L.
From the Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, Stockholm, Sweden
Non-invasive radioligand imaging methods for brain receptor studies use either short-lived positron-emitting radionuclides such as 11C and 18F for positron emission tomography (PET) or single photon-emitting radionuclides such as 123I for single photon emission computed tomography (SPECT). PET and SPECT use radioligands which are injected intravenously into experimental animals, human volunteers or patients. The main applications of radioligands in brain research concern human neuropsychopharmacology and the discovery and development of novel drugs to be used in the therapy of neurological and psychiatric disorders. A basic problem in PET and SPECT brain receptor studies is the lack of useful radioligands with appropriate binding characteristics. Prerequisite criteria need to be satisfied for a radioligand to reveal target binding sites in vivo. This section will discuss these important criteria and also review recent examples in neuroreceptor radioligand development such as selective radioligands for brain monoamine transporters.