Home > Riviste > Minerva Medica > Fascicoli precedenti > Minerva Medica 2016 October;107(5) > Minerva Medica 2016 October;107(5):287-93

ULTIMO FASCICOLO
 

JOURNAL TOOLS

Opzioni di pubblicazione
eTOC
Per abbonarsi
Sottometti un articolo
Segnala alla tua biblioteca
 

ARTICLE TOOLS

Estratti
Permessi
Per citare questo articolo
Share

 

ORIGINAL ARTICLES   

Minerva Medica 2016 October;107(5):287-93

Copyright © 2016 EDIZIONI MINERVA MEDICA

lingua: Inglese

MicroRNA-21 promotes the proliferation and invasion of neuroblastoma cells through targeting CHL1

Ying LI, Ya M. SHANG, Qi W. WANG

Department of Pediatrics, Huaihe Hospital of HeNan University, Kaifeng, Henan Province, China


PDF


BACKGROUND: Neuroblastoma (NB) is one of the most common solid tumors in infants and children. Numerous reports demonstrated that microRNAs (miRNAs) play important roles in the carcinogenesis of neuroblastoma. miR-21 functions as a tumor oncogene in some malignancies. However, its role in NB remains poorly understood.
METHODS: miR-21 expression was quantified in NB tissues and matched adjacent non-tumor tissues using quantitative real-time PCR (RT-PCR). Cell proliferation, migration, and invasion were measured following overexpression of miR-21 expression by miR-21 mimics. miR-21 targets were scanned using target prediction programs. Following the overexpression of miR-21, target gene expression was detected by western blotting. In addition, cell proliferation, migration, and invasion were measured following inhibition of CHL1 expression by siRNA.
RESULTS: In the present study, our results showed that miR-21 was increased in NB tissues compared with matched adjacent non-tumor tissues. Forced overexpression of miR-21 significantly increased NB cell proliferation, migration, and invasion. Close homolog of LI (CHL1) was found to be a target of miR-21. Furthermore, downregulation of CHL1 by siRNA performed similar effects with overexpression of miR-21 in NB cells.
CONCLUSIONS: We suggested that miR-21 promoted neuroblastoma cell growth and motility partially by targeting CHL1, indicating the potential utility of miR-21 inhibition as a novel therapeutic strategy against neuroblastoma.

inizio pagina