Management of Abdominal Aortic Aneurysms
The management of abdominal aortic aneurysms is one of the most investigated and interesting topics in current vascular and endovascular surgery.

This book was planned as a modern and comprehensive work on abdominal aortic aneurysms, reviewing all the relevant issues in this field: after an update on the latest aneurysms developments, an exhaustive revision of all the available Guidelines is provided. Then, all treatment modalities for infrarenal, juxtarenal and suprarenal aneurysms are illustrated in detail and commented. A place of honor has been reserved for new technologies, such as EVAS and branch of hypogastric arteries. Last, but not least, hot topics such as rupture, technical failure and infections are thoroughly discussed.

The compilation of this book was made possible by all the authors involved, who shared their great expertise and their invaluable experience. This is a reference work written by expert vascular surgeons for fellow surgeons and students interested in extending their knowledge in the field of abdominal aortic aneurysm management.

Francesco Speziale
Authors

VITTORIO ALBERTI
Department of Vascular Surgery, San Filippo Neri Hospital, Rome, Italy

ANGELO ARGENTERI
Vascular Surgery Unit, University of Pavia - Teaching Hospital IRCCS Policlinico San Matteo, Pavia, Italy

DOMENICO BACCHELLIERI
Department of Vascular Surgery “Vita-Salute” University School of Medicine, Scientific Institute San Raffaele, Milan, Italy

MATTEO BARBANTE
Vascular Surgery Unit, University of Rome “Tor Vergata”, Rome, Italy

LUCA BERTOGLIO
Department of Vascular Surgery “Vita-Salute” University School of Medicine, Scientific Institute San Raffaele, Milan, Italy

ROBERTO BISCEGLIE
Vascular Surgery Unit, University of Rome “Tor Vergata”, Rome, Italy

MARTA PIÀ BORRELLI
Vascular and Endovascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy

MATTIA ISSI
Vascular Surgery Unit, Department of Surgery and Morphological Sciences, University of Insubria School of Medicine - Circolo University Teaching Hospital - Varese, Italy

VINCENZO BRIZZI
Vascular Surgery Unit, Hôpital Tripode, University Hospital of Bordeaux, France

CAROLINE CARADU
Vascular Surgery Unit, Hôpital Tripode, University Hospital of Bordeaux, France

PATRIZIO M. CASTELLI
Vascular Surgery Unit, Department of Surgery and Morphological Sciences, University of Insubria School of Medicine - Circolo University Teaching Hospital - Varese, Italy

ROBERTO CHIESA
Department of Vascular Surgery “Vita-Salute” University School of Medicine, Scientific Institute San Raffaele, Milan, Italy

SIMONE CUOZZO
Vascular and Endovascular Surgery Unit, Department of Surgery “P. Stefanini”, Sapienza University, Rome, Italy

LAZAR B. DAVISOVIC
School of Medicine, University of Belgrade - Clinic for Vascular and Endovascular Surgery, Clinical Centre of Belgrade, Serbia

GIANMARCO DE DONATO
Vascular and Endovascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy

DOMENICO DIACO
Vascular Surgery Unit, University of Pavia - Teaching Hospital IRCCS Policlinico San Matteo, Pavia, Italy

WALTER DORIGO
Department of Vascular Surgery, University of Florence, Italy

ERIC DUCASSE
Vascular Surgery Unit, Hôpital Tripode, University Hospital of Bordeaux, France
Federico Facenna
Vascular Surgery, Sapienza University, Rome
- Unit of Vascular Surgery and Emergency Surgery, Policlinico Umberto I, Rome, Italy

Gianluca Faggioli
Department of Vascular Surgery, University of Bologna (DIMES) - Policlinico S. Orsola-Malpighi, Bologna, Italy

Aaron Fargion
Department of Vascular Surgery, University of Florence, Italy

Stefano Fazzini
Department of Vascular Surgery, San Filippo Neri Hospital, Rome, Italy

Massimo Ferrario
Vascular Surgery Unit, Department of Surgery and Morphological Sciences, University of Insubria School of Medicine - Circolo University Teaching Hospital - Varese, Italy

Ciro Ferrer
Department of Surgery “P. Valdoni”, Sapienza University, Rome, Italy

Roberta Ficarelli
Vascular Surgery Department, Sant’Andrea Hospital, Sapienza University, Rome, Italy

Mauro Fresilli
Vascular Surgery, Sapienza University, Rome
- Unit of Vascular Surgery and Emergency Surgery, Policlinico Umberto I, Rome, Italy

Enrico Gallitto
Department of Vascular Surgery, University of Bologna (DIMES) - Policlinico S. Orsola-Malpighi, Bologna, Italy

Giuseppe Galzerano
Vascular and Endovascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy

Mauro Gargiulo
Department of Vascular Surgery, University of Bologna (DIMES) - Policlinico S. Orsola-Malpighi, Bologna, Italy

Bruno Gossetti
Vascular Surgery, Sapienza University, Rome
- Unit of Vascular Surgery and Emergency Surgery, Policlinico Umberto I, Rome, Italy

Alessandro Grandi
Department of Vascular Surgery “Vita-Salute” University School of Medicine, Scientific Institute San Raffaele, Milan, Italy

Arnaldo Ippoliti
Vascular Surgery Unit, University of Rome “Tor Vergata”, Rome, Italy

Marco Leopardi
Department of Vascular Surgery “Vita-Salute” University School of Medicine, Scientific Institute San Raffaele, Milan, Italy

Claudia Maggiore
Vascular Surgery Department, Sant’Andrea Hospital, Sapienza University, Rome, Italy

Nicola Mangialardi
Department of Vascular Surgery, San Filippo Neri Hospital, Rome, Italy

Wassim Mansour
Vascular and Endovascular Surgery Unit, Department of Surgery “P. Stefanini”, Sapienza University, Rome, Italy

Enrico Maria Marone
Vascular Surgery Unit, University of Pavia - Teaching Hospital IRCCS Policlinico San Matteo, Pavia, Italy

Ombretta Martinelli
Vascular Surgery, Sapienza University, Rome
- Unit of Vascular Surgery and Emergency Surgery, Policlinico Umberto I, Rome, Italy

Daniele Mascia
Department of Vascular Surgery “Vita-Salute” University School of Medicine, Scientific Institute San Raffaele, Milan, Italy

Chiara Mascoli
Department of Vascular Surgery, University of Bologna (DIMES) - Policlinico S. Orsola-Malpighi, Bologna, Italy

Giulia Mazzitelli
Vascular and Endovascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy

Mariagnese Mele
Vascular and Endovascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
Contents

1. AAA development in humans: etiopathogenesis and risk factors ... R. Ficarelli, C. Panzera, C. Maggiore, L. Rizzo, M. Taurino 1
2. When and how to treat an AAA: an update on the basis of recent guidelines A. Argenteri, E.M. Marone, D. Diaco, M. Rota 8
3. Open surgery for infra-renal AAA .. L.B. Davidovic 16
7. Evidence and controversies in IAAA management .. P.M. Castelli, M. Ferrario, N. Rivolta, G. Piffaretti, M. Bossi, A. Tarallo 62
10. How to manage challenging accesses for EVAR ... A.Ippoliti, M. Barbante, R. Bisceglie, G. Pratesi 94
11. How to manage ruptured AAA: indications, techniques and equipment N. Mangialardi, S. Ronchey, C. Ferrer, M. Orrico, B. Praquin, S. Fazzini, V. Alberti 105
AAA development in humans: etiopathogenesis and risk factors

R. Ficarelli, C. Panzera, C. Maggiore, L. Rizzo, M. Taurino

THE EPIDEMIOLOGY OF AORTIC ANEURYSMS

Abdominal aortic aneurysm (AAA) affects around 2% of the world’s population. The mortality of a ruptured AAA is as high as 80% to 90%, and rupture of an AAA accounts for a significant fraction of deaths, especially among older men. In contrast, the mortality for elective open surgery before rupture is only 2% to 6%. Early diagnosis of AAA before rupture is, therefore, important for patient survival.

Although epidemiologic and demographic risk factors for the development of aneurysms have been established in various populations, these relationships have proved less reliable in predicting significant clinical events, such as expansion and rupture, with any clinically meaningful precision. Because the risk of rupture is well understood to be proportional to the maximum diameter of the AAA, the elucidation of risk factors for aneurysm enlargement is perhaps the most effective strategy for understanding the natural history of AAA. Some authors define AAA as an infrarenal aortic diameter >30 mm. Conversely, the Society for Vascular Surgery and the International Society for Cardiovascular Surgery propose a definition for AAA as an infrarenal to normal abdominal aortic diameter ratio of ≥1.5.

The mechanism of pathogenesis of AAA is not entirely clarified, so far. Thus, in order to better understand this disease, a closer investigation of AAA and its surrounding tissue is necessary.

AAA has been classified as an extracellular matrix (EMC) remodeling disease that causes an enlargement of the abdominal segment of the aorta.

RISK FACTORS FOR THE DEVELOPMENT OF AORTIC ANEURYSMS

Epidemiologic risk factors significantly associated with the development of abdominal aortic aneurysms include cigarette smoking, advanced age, gender, family history of AAA, hypertension, central obesity, hypercholesterolemia, coronary artery disease, lower extremity peripheral arterial disease, and carotid disease. Female gender, African-American ethnicity, diabetes mellitus, and regular exercise (in men) are protective against AAA disease.

SMOKING

Hammond and Horn first described an association between smoking and aneurysms in 1958. Cigarette smoking is the major environmental risk factor for AAA, enhancing the chance of developing AAA as well as the risk of rupture, with reported odds ratios ranging from 3.0 to 12.0. AAA has a strong positive association with quantity and duration of smoking and an inverse association with the number of years after smoking cessation.

Smoking confers at least a 3.5-fold greater increase in relative risk than any other recog-
AAA DEVELOPMENT IN HUMANS: ETIOPATHOGENESIS AND RISK FACTORS

Women present at an older age than men with similarly sized small AAAs. Mortality following the repair of AAA is also higher in women than in men, a difference that is most pronounced with endovascular repair (EVAR). Some of the observed sex differences in the incidence of AAA may be related to the protective effects of estrogen against aneurysm development, as well as the negative effects of testosterone on the aorta. The incidence in women also rises with age, although it starts later in life than in men. There are also sex differences in the risk of rupture and in the outcomes that require women to be included in AAA screening programs.

DIABETES MELLITUS

The negative association observed between diabetes mellitus and AAA has been the focus of specific attention. Several studies demonstrate this apparent protective effect, with a decreased incidence of AAA disease in diabetics as well as decreased aneurysm growth and rupture rates.

RISK OF EXPANSION AND RUPTURE OF AORTIC ANEURYSMS

After an initial diagnosis, the aim of screening is to identify the risk factors associated with AAA expansion and rupture. Although rates of enlargement vary with time and aortic diameter, the average abdominal aortic aneurysm grows at the rate of 2 mm/year to 3 mm/year. Smoking is a major risk factor for the progression and rupture of AAA, affecting collagen synthesis, oxidative stress and altered expression of metalloproteinases. Smoking also reduces estrogenic effects, ovarian function and age at menopause, increasing the vulnerability of aneurysms among smoking women compared with smoking men.

A meta-analysis using data from patients with small AAAs demonstrated that the rate of expansion increases with current smoking.
status by approximately 20%. This meta-analysis reported that current smoking status doubled the risk of rupture in individuals with AAAs (hazard ratio 2.02; 95% confidence interval [CI] 1.33-3.06).

The baseline diameter of an aneurysm strongly influences its growth rate (larger AAAs grow more rapidly). Data from the UK small aneurysm trial demonstrated that AAAs with a 5 cm diameter grow approximately 70% faster than those 4 cm in diameter. As the size of the aneurysm increases, so does the risk of rupture. Several large population studies have demonstrated that the risk of aneurysm rupture is very low (0-2.5% after 5 years) for aneurysms less than 5.0 cm in diameter. For aneurysms measuring more than 5.0 cm, the 5-year risk of rupture increases well above 20%.

Recognized AAA risk factors, including peripheral vascular disease, hypertension, and hyperlipidemia, have not been consistently associated with rates of expansion. As mentioned, the presence of diabetes mellitus has a protective effect on aneurysm growth (reduction by 30%).

PATHOPHYSIOLOGY OF THE ANEURYSM WALL

Abdominal aortic aneurysm is an inflammatory-degenerative disease, characterized by aortic wall weakening and dilatation. The medial destruction characteristic of the abdominal aortic aneurysm is remarkable for the near-complete elimination of normal structural elements, particularly the typical elastic fiber sheets. Because the elastin is normally incredibly durable, investigations into the pathophysiology of the AAA have focused on the enzymatic processes of elastolysis. Elastolytic enzymes were noted to be substantially elevated within the aneurysm wall, including neutrophil elastase as well as several members of the MMP class. Specific changes in the aortic wall, including chronic adventitial and medial inflammatory cell infiltration, decrease in elastin content, and loss of integrity of ECM, have been described histologically.

MMPs are a family of extracellular matrix-degrading enzymes which are essential for a range of homeostatic physiologic processes, including wound healing, angiogenesis, tissue remodeling, and bone resorption. The activity of MMPs is inhibited by the expression and local release of biologic inhibitors of MMP activity such as tissue inhibitors of metalloproteinases (TIMPs). Pro-MMPs are secreted by neutrophils, macrophages, fibroblasts and vascular smooth muscle cells (SMCs). MMPs are controlled at several levels, including the induction and suppression of MMP gene transcription, extracellular activation, and interaction with natural inhibitors.

Moreover, an inflammatory infiltrate constituted by macrophages, and T and B lymphocytes, has been observed within the tunica media in aneurysms. The complex interaction between T lymphocytes, macrophages, and mesenchymal cells induces cytokines, chemokines, and MMP release, which deeply affect parietal integrity. Several MMPs have been involved in the process underlying aneurysm formation; in particular, an overexpression of MMP-1, MMP-2, MMP-3, MMP-9, MMP-12, and MMP-13 has been demonstrated both in plasma and within the wall in patients with both thoracic and abdominal aneurysms. Accordingly, an imbalance between MMPs and TIMPs has been related to aortic wall diseases. MMP-2 and MMP-9 have been the most studied MMPs in patients with aneurysms occurring at any aortic site, and it has been demonstrated that their levels were correlated with wall weakening. Plasma MMP-9 levels are also increased in AAA disease. Patients with large AAAs (between 5 cm and 6.9 cm) have higher circulating levels than patients with small (<4 cm) or huge (>7 cm) AAAs. Like MMP-9, MMP-2 is capable of degrading elastin and type IV collagen. It is constitutively expressed by SMCs and fibroblasts. Aortic samples obtained from smaller aneurysms demonstrate relatively greater MMP-2 than MMP-9 activ-
stimuli and may directly contribute to the progression of AAA disease. Direct participation of the vascular SMCs in the process of AAA development may be related to acquired or intrinsic enhancement of the matrix-modifying capabilities of these cells.

BIOMECHANICAL EFFECTS

The presence of differential hemodynamic conditions along the length of the aorta explains the fivefold greater incidence of AAAs.

When compared with the suprarenal segments, the infrarenal aorta shows an increased peripheral resistance and oscillatory wall shear stress, and reduced flow during resting conditions. These conditions are recognized to predispose arteries to degenerative disease.

The risk of rupture in an AAA generally increases with size. The physiologic rationale behind monitoring the maximal diameter is the Laplace equation, which states that wall tension in regular and thin-walled structures, such as symmetric cylinders and spheres, is directly proportional to their radii. However, AAAs are often fusiform, asymmetric, and tortuous, containing an intraluminal thrombus of varying thickness, all of which make the application of this equation to the AAA structure unsatisfactory.

HEMODYNAMIC FORCES ON THE AORTA

Aortic hemodynamic forces are essential contributors to progressive aneurysmal degeneration and ultimate rupture. In the consideration of biomechanical forces in the context of a pressurized tube, the term stress refers to the amount of force exerted on the arterial wall per unit area, whereas strain constitutes stress-induced mural deformation per unit area. Wall shear stress (WSS) refers to the drag exerted on the arterial wall by moving blood as a function of local flow conditions (laminar versus turbulent), as distinguished from usual muscle...
In a recent study, infrarenal aortic volume at baseline correlated with both absolute and relative volume growth, as well as increasing estimated wall stress and biomechanical rupture risk. The correlation between baseline volume and subsequent volume growth was superior to the correlation between baseline diameter and diameter growth, suggesting a greater focus on the entire geometry of the aneurysm structure rather than sole reliance on the maximal diameter.

Laboratory experimental data show that AAA diameter varies inversely with aortic flow: increasing flow either before or after the creation of an aneurysm by surgical distal arteriovenous fistula formation or by increased daily exercise wheel access reduces aneurysm size, whereas reductions in aortic flow augment aneurysm size, all without measurable influences on aortic pressure. Clinical relevance is underscored by the recognition that major lower limb amputation and, in later studies, chronic spinal cord injury predispose patients to increased risk of late AAA formation independent of other recognized systemic factors, such as cigarette smoking or obesity.

In association with environmental and acquired risk factors such as smoking, genetic predisposition influences risk of and the progression of aneurysm disease. The association between variations in genomic sequence and the risk of thoracic aneurysm disease is much more established than that related to abdominal aneurysm disease. This situation is primarily due to major differences in the underlying disease pathogenesis.

Currently, no known monogenic disorders have been described as causing aneurysms specific to the abdominal aorta. Aortic root and ascend-
ing aortic aneurysms commonly develop as a consequence of cystic medial degeneration, often in younger patients with Marfan syndrome, Ehlers-Danlos syndrome, Turner’s syndrome, bicuspid aortic valves, or familial thoracic aortic aneurysm syndromes. Inherited connective tissue disorders are a common cause of aortic aneurysms in younger patients. Approximately 20% of TAAAs are attributable to syndromes associated with single-gene mutations.

In total, seven monogenic mutations have been described to cause TAA disease, including fibrillin 1 (FBN1), transforming growth factor-β (TGF-β) receptors 1 and 2 (TGFBR1, TGFBR2), myosin light chain kinase (MYLK), smooth muscle myosin heavy chain 11 (MYH11), smooth muscle alpha actin 2 (ACTA2), and SMAD family member 3 (SMAD3). Mutations in any one of these genes is usually highly penetrant and is inherited in an autosomal dominant pattern.

OTHER GENES RELATED TO AAA

If patients with generalized matrix deficiency diseases such as Marfan syndrome and Ehlers-Danlos syndrome are excluded, relevant family histories of AAA disease can be obtained from 15-20% of patients with AAs. The risk of AAAs in males with a first degree relative affected by the disease is approximately fourfold higher than the risk in the general population.

A twin-based recent study was performed to analyze the relative etiological importance of genetic and environmental factors for AAA development. In this study, a 2.5-times higher proband-wise concordance rate was found in monozygotic twins compared with dizygotic twins, and an overall heritability of 77% was found, which suggests a substantial genetic component in the development of AAA.

A meta-analysis of candidate genes demonstrated that single nucleotide polymorphisms (SNPs) in the genes encoding angiotensin-converting enzyme (ACE), angiotensin type 1 receptor (AT1R), MMP-9, and methylenetetrahydrofolate reductase (MTHFR) have been consistently associated with AAAs.

Genome-wide association studies provide a more robust method for identifying genes associated with disease processes such as AAA. These studies scan the entire genome, in an unbiased fashion, for SNPs associated with a particular disease, and have identified SNPs associated with AAA disease.

Currently, the strongest genomic association with AAA that has been described relates to a SNP on 9p21, previously associated with coronary artery disease. Another locus for AAA has been identified on 9q33. This SNP also demonstrated an association with coronary artery disease, peripheral artery disease, and pulmonary embolism but not with intracranial aneurysms.

Ogata et al. reported results on an unbiased, comprehensive genome-wide approach, namely a DNA linkage study for familial AAA using sex and family history as covariates, and identified linkage to chromosomes 19q13 and 4q31, suggesting that these regions of the human genome harbor genetic risk factors for AAA. They also found that the prevalence of AAA in the brothers of the AAA probands was almost three times that in the sisters; a similar trend was observed in the group of siblings of the spouses.

Finally, in another large genome-wide association study, a specific association between a variant in low-density-lipoprotein receptor-related protein 1 (LRP1) and AAA was reported. Despite several polymorphisms recognized to influence disease risk, the risk attributable to these SNPs is relatively small. It is unlikely that any single gene is essential for the initiation of AAA. A combination of predisposing polymorphisms is probably responsible for the majority of heritable risk for the development of AAA in any individual patient.

ROLE OF AORTIC THROMBUS

Intraluminal thrombus (ILT) is a natural phenomenon that is based on the deposition of
blood components when an abdominal aortic aneurysm grows to a certain size. Whether the presence of ILT has any influence on the natural history of the AAA continues to be a matter of debate.

In 1965, Martin surmised that as an aneurysm develops, it becomes lined with thrombus, which weakens it by interfering with nutrition of that segment of the wall. Intraluminal thrombus is not protective and weakens the aneurysm wall. In 2000, using a pressure transducer during open aneurysm repair, Schurink et al. confirmed that intraluminal thrombus does not reduce pressure close to the aneurysm wall. Vorp et al. also confirmed localized hypoxia in regions of thicker thrombus that might lead to localized wall neovascularization, inflammation, and regional wall thinning. Hypoxia also affects the function of vascular smooth muscle cells, causing them to secrete more collagenase than in normoxic conditions, with less elastin and collagen production. Furthermore, the accumulation of thrombus may impair the diffusion of oxygen across the aortic wall, resulting in relative hypoxia and potential SMC apoptosis/necrosis. Biologically active substances infiltrate through the aortic wall by centrifugal convection and centripetal filtration, destabilizing the matrix-rich aortic media, increasing the inflammatory response and therefore increasing the risk of progression and rupture.

In addition to being an indirect marker of disease progression, intraluminal thrombus may also directly mediate progression of aneurysms through plasmin. Activation of proteolytic MMPs degrades extracellular tissues, cleaves cell surface receptors, and are involved in tissue remodeling. Intraluminal thrombus contains high levels of MMP-2 and MMP-9, trapped neutrophils rich in MMP-9, and neutrophil gelatinase-associated lipocalin, which neutralizes the defensive actions of tissue inhibitors of metalloproteinases. Laminar thrombus may also alter peak wall strain in AAA. The balance of thrombus-related influences on AAA disease remains uncertain, with most investigators concluding that laminar thrombus generally increases the progression of disease and risk of rupture in AAAs of similar diameter.

An autopsy study of 78 patients who died of infrarenal ruptured AAAs showed that 80% of ruptures occurred at the site of mural thrombus. This was supported by CT studies of patients admitted with rupture, which showed that most of the wall disruption occurred through the thrombus or at its edge. Others argue that cracks or fissures in the intraluminal thrombus due to proteolytic enzymes on the luminal surface of the clot are what really cause rupture. However, a definitive consensus has not been gained. A Dutch report in 2013, while accepting a role for initial disruption formation confirmed that intraluminal thrombus thickness was associated with vascular smooth muscle cell apoptosis (or cell death), elastin degradation, and high levels of MMP-2 and correlated with aneurysm rupture.

REFERENCES