![]() |
JOURNAL TOOLS |
eTOC |
To subscribe |
Submit an article |
Recommend to your librarian |
ARTICLE TOOLS |
Reprints |
Permissions |

YOUR ACCOUNT
YOUR ORDERS
SHOPPING BASKET
Items: 0
Total amount: € 0,00
HOW TO ORDER
YOUR SUBSCRIPTIONS
YOUR ARTICLES
YOUR EBOOKS
COUPON
ACCESSIBILITY
FOREWORD NON-STANDARD PET NUCLIDES
The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2008 June;52(2):151-8
Copyright © 2008 EDIZIONI MINERVA MEDICA
language: English
Image quality with non-standard nuclides in PET
Laforest R., Liu X.
Mallinckrodt Institute of Radiology Washington University School of Medicine St. Louis, MO, USA
Non-standard positron emission tomography (PET) nuclides bring with them the prospect of new chemistry leading the way to novel approaches for targeted imaging and therapy. In particular, the kinetic energy of the positron of some of these nuclides is high (as much as 4 MeV) and, thus, a highly specific PET probe can be very lethal to cancerous cells. However, the high positron energy will degrade the spatial resolution, and this degradation will be more important in high-resolution, small animal PET imaging, where most of the novel tracers are developed. This paper discusses the image quality in small animal PET imaging obtained with such nuclides. The nuclides of 60Cu, 61Cu and 64Cu, 76Br, 94mTc, and 89Zr will be particularly analyzed. The spatial resolution will be seen to degrade with nuclides with higher positron end-point energy, going from 1.7 mm for 18F to 2.2 mm for 76Br, for example. Many of these novel PET nuclides decay by the emission of cascades γ rays that are detected in coincidence with the positron annihilation photons which create additional noise on the images. However, the use of an image reconstruction algorithm, which includes a model of the statistical nature of nuclear decay and the modeling of the tomograph response, contributes to both improve the spatial resolution and at the same time reduce the image noise.