![]() |
JOURNAL TOOLS |
eTOC |
To subscribe |
Submit an article |
Recommend to your librarian |
ARTICLE TOOLS |
Reprints |
Permissions |

YOUR ACCOUNT
YOUR ORDERS
SHOPPING BASKET
Items: 0
Total amount: € 0,00
HOW TO ORDER
YOUR SUBSCRIPTIONS
YOUR ARTICLES
YOUR EBOOKS
COUPON
ACCESSIBILITY
MOLECULAR MANIPULATION AND PHARMACOKINETICS
The Quarterly Journal of Nuclear Medicine 1998 December;42(4):271-9
Copyright © 2000 EDIZIONI MINERVA MEDICA
language: English
Liposomes for scintigraphic imaging: optimization of in vivo behavior
Boerman O. C., Oyen W. J. G., Corstens F. H. M., Storm G.*
From the Department of Nuclear Medicine University Hospital Nijmegen, The Netherlands * Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences (UIPS) Utrecht University, The Netherlands
Liposomes, microscopic lipid vesicles consisting of concentric phospholipid bilayers enclosing discrete aqueous spaces, have been investigated extensively as carriers for drugs in attempts to achieve selective deposition and/or reduced toxicity. Liposomes radiolabeled with gamma emitters (67Ga, 111In and 99mTc) have been used for imaging purposes. Liposomes as formulated in the past, are rapidly taken up by cells of the mononuclear phagocyte system, primarily those located in liver and spleen. However, it has been shown during the last two decades that the in vivo behavior of liposomes can be modulated by modifying their formulation. The size and the lipid composition have a major influence on the blood clearance rate, hepatic uptake and splenic uptake of liposomes. The development of long circulating liposomes, in particular coating of the bilayer with polyethyleneglycol (PEG) resulted in liposomes that oppose recognition by the MPS, thus displaying even longer circulatory half-lives. By carefully adjusting the liposomal formulation, the in vivo characteristics of liposomes can be tailored such that they become suitable vehicles for imaging various pathological processes in vivo. Liposomes have been proposed for tumor imaging, for infection imaging and as blood pool markers. Here, the factors that determine the in vivo behavior of liposomes and the current status of liposome-based radiopharmaceuticals are reviewed.