Ricerca avanzata

Home > Riviste > The Quarterly Journal of Nuclear Medicine and Molecular Imaging > Fascicoli precedenti > The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2015 Marzo;59(1) > The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2015 Marzo;59(1):70-82

FASCICOLI E ARTICOLI   I PIÙ LETTI   eTOC

ULTIMO FASCICOLOTHE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING

Rivista di Medicina Nucleare e Imaging Molecolare

A Journal on Nuclear Medicine and Molecular Imaging
Affiliated to the Society of Radiopharmaceutical Sciences and to the International Research Group of Immunoscintigraphy
Indexed/Abstracted in: Current Contents/Clinical Medicine, EMBASE, PubMed/MEDLINE, Science Citation Index (SciSearch), Scopus
Impact Factor 2,413

Periodicità: Trimestrale

ISSN 1824-4785

Online ISSN 1827-1936

 

The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2015 Marzo;59(1):70-82

SECOND GENERATION PET TRACERS IN ONCOLOGY 

 REVIEWS

Applications of PET imaging of neurological tumors with radiolabeled amino acids

Galldiks N. 1, 2, 3, Langen K.-J. 2, 4, 5

1 Department of Neurology, University of Cologne, Cologne, Germany;
2 Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich, Germany;
3 Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany;
4 Juelich‑Aachen Research Alliance (JARA), Section JARA‑Brain;
5 Department of Nuclear Medicine, University of Aachen, Aachen, Germany

Routine diagnostics and treatment monitoring of brain tumors is usually based on contrast-enhanced magnetic resonance imaging (MRI). However, the capacity of structural MRI to differentiate neoplastic tissue from non-specific treatment changes may be limited especially after therapeutic interventions such as neurosurgical resection, radio- and chemotherapy. Metabolic imaging using PET may provide relevant additional information on tumor metabolism, which allows for more accurate diagnostics especially in clinically equivocal situations. In contrast to the widely used 18F-2-fluoro-2-deoxy-D-glucose, which exhibits a poor tumor-to-background contrast within the brain, amino acid tracers provide high sensitivity to detect primary tumors, recurrent or residual gliomas, including most low-grade gliomas. The method improves targeting of biopsy and provides additional information of tumor extent, which is helpful for planning neurosurgery and radiotherapy. In the further course of the disease, amino acid positron-emission tomography (PET) allows a sensitive monitoring of treatment response, the early detection of tumor recurrence, and an improved differentiation of tumor recurrence from treatment-related changes. In the past, the method had only limited availability due to the use of radiopharmaceuticals with a short half-life. In recent years, however, novel amino acid tracers labeled with positron emitters with a longer half-life have been developed and clinically validated which allow a more efficient and cost-effective application. These developments and the well-documented diagnostic performance of PET using radiolabeled amino acids suggest that its application continues to spread and that the method may be available as a routine diagnostic technique for certain indications in the near future.

lingua: Inglese


FULL TEXT  ESTRATTI

inizio pagina