Ricerca avanzata

Home > Riviste > The Quarterly Journal of Nuclear Medicine and Molecular Imaging > Fascicoli precedenti > The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2015 Marzo;59(1) > The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2015 Marzo;59(1):58-69

FASCICOLI E ARTICOLI   I PIÙ LETTI   eTOC

ULTIMO FASCICOLOTHE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING

Rivista di Medicina Nucleare e Imaging Molecolare


A Journal on Nuclear Medicine and Molecular Imaging
Affiliated to the Society of Radiopharmaceutical Sciences and to the International Research Group of Immunoscintigraphy
Indexed/Abstracted in: Current Contents/Clinical Medicine, EMBASE, PubMed/MEDLINE, Science Citation Index (SciSearch), Scopus
Impact Factor 2,413

 

The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2015 Marzo;59(1):58-69

SECOND GENERATION PET TRACERS IN ONCOLOGY 

 REVIEWS

Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]tracers, [11C]/[18F]-HTP)

Ambrosini V., Morigi J. J., Nanni C., Castellucci P., Fanti S.

Nuclear Medicine DIMES, University of Bologna and S. Orsola‑Malpighi Hospital, Bologna, Italy

Neuroendocrine neoplasms (NEN) functional imaging is an evolving field that witnessed major advances in the past two decades. The routine use of PET/CT with an array of new radiotracers to specifically study NEN resulted in an increase in lesions detection. Currently, PET radiopharmaceuticals for NEN imaging include both metabolic ([18F]DOPA, [18F]FDG, [11C]/[18F]-HTP) and receptor-mediated compounds ([68Ga]DOTA-peptides). Discussion is still on-going regarding the clinical setting that may benefit the most from the use of one tracer over the other. [68Ga]DOTA-peptides are accurate for the detection of well differentiated NEN and are increasingly employed. Moreover, providing data on somatostatin receptors expression on NEN cells, they represent a fundamental procedure to be performed before starting therapy, as well as to guide treatment, with either hot or cold somatostatin analogues. The easy and economic synthesis process also favours their clinical employment even in centres without an on-site cyclotron. [18F]DOPA is accurate for studying well differentiated tumours however the difficult and expensive synthesis have limited its clinical employment. It currently can be successfully used for imaging tumours with variable to low expression of SSR (medullary thyroid carcinoma, neuroblastoma, pheocromocytoma), that cannot be accurately studied with [68Ga]DOTA-peptides.
[11C]/[18F]-HTP has also been proposed to image well differentiated NEN, on the basis of serotonin pathway activity, for which [11C]/[18F]-HTP can be used as precursor. However, although preliminary data are encouraging, the feasibility of its widespread clinical use is still under discussion, mainly limited by a complex synthesis process and more proven advantages over other currently employed compounds. This review aims to provide an overview of the current status and clinical application of PET tracers to image well differentiated NEN and to focus on the still open-issues of debate.

lingua: Inglese


FULL TEXT  ESTRATTI

inizio pagina