Ricerca avanzata

Home > Riviste > Minerva Biotecnologica > Fascicoli precedenti > Minerva Biotecnologica 2004 Settembre;16(3) > Minerva Biotecnologica 2004 Settembre;16(3):189-202



Rivista di Biologia Molecolare e Biotecnologie

Indexed/Abstracted in: EMBASE, Science Citation Index Expanded (SciSearch), Scopus
Impact Factor 0,246

Periodicità: Trimestrale

ISSN 1120-4826

Online ISSN 1827-160X


Minerva Biotecnologica 2004 Settembre;16(3):189-202


Pharmacogenomics and colorectal cancer

Lenz H.-J.

Division of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA, USA

The current methods of treating cancer patients with chemotherapeutics do not account for interpatient variability in the expression of particular target genes. This variability leads to unpredictable tumor responses and host toxicity. The approach we have taken is to determine gene expression levels in the metabolic pathways of drugs used in the treatment of gastrointestinal tumors. One of the main obstacles in the evaluation and determination of these markers has been the limitations of available technology. Many advances have been made in the development of more sophisticated techniques and the ability to perform these techniques on paraffin-embedded tumor tissue. In fact, with the identification of genetic polymorphisms, these markers may be obtained from peripheral blood specimens, thus making access to tissues a moot issue. An immediate goal is the application of this nascent technology and incorporation of these data in prospective clinical trials that would stratify patients according to their molecular profile. The ability to predict with a high degree of accuracy which patients are likely to respond to treatment and identify those who are not likely to respond will significantly influence the design of new treatment regimens with fluoropyrimidines and platinum. Tumors with high thymidylate synthase (TS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) expression levels should be treated with such non-TS–directed anticancer drugs as irinotecan or oxaliplatin. Patients with high expression of ERCC1 should be treated with nonplatinum-based regimens, whereas patients with low levels would be good candidates for oxaliplatin. We now understand that molecular determinants play an important role in response to 5-FU. With the development of new effective anticancer drugs such as irinotecan and oxaliplatin, it is important to gain a better understanding about the metabolism of these new active agents and mechanisms of resistance. It is essential to understand why some patients develop life-threatening toxicity and why some tumors are resistant to irinotecan or oxaliplatin. With the integration of novel targeted therapies such as Cetuximab and Bevazucinab, molecular characterization and profiling will become more important for patient selection.

lingua: Inglese


inizio pagina