Home > Journals > Minerva Stomatologica > Past Issues > Minerva Stomatologica 2016 December;65(6) > Minerva Stomatologica 2016 December;65(6):335-42

CURRENT ISSUEMINERVA STOMATOLOGICA

A Journal on Dentistry and Maxillofacial Surgery


Official Journal of the Italian Society of Odontostomatology and Maxillofacial Surgery
Indexed/Abstracted in: CAB, EMBASE, Index to Dental Literature, PubMed/MEDLINE, Scopus, Emerging Sources Citation Index


eTOC

 

ORIGINAL ARTICLES  


Minerva Stomatologica 2016 December;65(6):335-42

language: English

Quantification of the amount of dental material removed by selective grinding in wax dentures with photogrammetric measurements

Francesco RAVASINI 1, Matteo FORNARI 2, Mauro BONANINI 1

1 SBiBit, University of Parma, Parma, Italy; 2 DICATeA, University of Parma, Parma, Italy


PDF  REPRINTS


BACKGROUND: The use of photogrammetry may be a new method to quantify the amount of artificial dental material removed from the surface of each teeth during the grind procedure (SG). SG is necessary in each denture to reach a correct occlusion. It consists in a refine action on the prosthesis teeth’s surface using milling machine tools, aimed to remove the interferences (pre-contacts) between upper and lower teeth during chewing. This measure is achieved after a comparison between pre and post-grinding 3D models. This new application could be of interest for both dentists and dental technicians because it could be used to evaluate, with a accurate numerical description, the action applied on teeth surfaces during the grinding process. Furthermore, results of the analysis could have some value for the dental industry, since the use of photogrammetry can improve the process, reducing costs during the design of artificial teeth and eventually this method could be used as a teaching tool both for dental and “dental technician” high school students. The purpose of this work is to measure the thickness of the artificial enamel removed during grinding phases. Usually, the dental technician adjusts the dental plate on the mount of the patient following the traditional method, without a quantitative evaluation of the material removed. The photogrammetric method (PM) proposed here allows to measure the amount of material removed during the grinding process. This measure is achieved after a comparison between pre and post-grinding 3D models.
METHODS: Under control of three teachers (experts of dentures performed according to the Gerber method) ten complete dentures arrangements (upper and inferior arches) performed by dental students at the Prosthodontic Department of the University of Parma, Italy were analyzed with PM before and after SG.
RESULTS: The average thickness variation between the pre and post-grinding dentures is within the range of 0.1÷0.4 mm. For the upper arches, the mean value of the SG process is 223 µm while for the inferior arches is 240 µm. Results show that the most important grind process in all models appear in correspondence of cusps, with values up to 1660 µm. On the other hand, in correspondence of the fossae the results show a moderate grind action: the value is around 200-300 µm. Conversely to guidelines thought to students: cusps undergo a greater grinding process than fossae, consequently cusps should be revisioned at least on their technical and morphological aspects. The average thickness variation between the pre and post-grinding dentures is within the range of 0.1÷0.4 mm, this mean an equal value loss of vertical dimension. Furthermore, the knowledge of the gauge material removed during the SG could be useful for dental industries, giving important information, that could be considered for project and design of artificial teeth.
CONCLUSIONS: The FM implemented in this article has given satisfactory preliminary results, showing good accuracy, low costs and high versatility. It is necessary to highlight that this is an experimental method and that the present analysis is a pilot study that needs further evaluation. Nevertheless results obtained could be of some value for medical companies, in order to improve the artificial teeth’s design and project. Moreover, such a method may serve as educational tool for dental students.

top of page