Home > Journals > Minerva Biotecnologica > Past Issues > Minerva Biotecnologica 2010 September-December;22(3-4) > Minerva Biotecnologica 2010 September-December;22(3-4):63-73

CURRENT ISSUE
 

ARTICLE TOOLS

Reprints

MINERVA BIOTECNOLOGICA

A Journal on Biotechnology and Molecular Biology


Indexed/Abstracted in: EMBASE, Science Citation Index Expanded (SciSearch), Scopus
Impact Factor 0,246


eTOC

 

ORIGINAL ARTICLES  


Minerva Biotecnologica 2010 September-December;22(3-4):63-73

language: English

Comparison of predictive capabilities of response surface methodology and artificial neural network for optimization of periplasmic interferon-a2b production by recombinant Escherichia coli

Tan J. S. 1, Ramanan R. N. 2, Ling T. C. 3, Shuhaimi M. 4, Ariff A. B. 1-5

1 Unit of Immunotherapeutic and Vaccine, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia Serdang, Selangor, Malaysia
2 Chemical and Sustainable Process Engineering Research Group, School of Engineering, Monash University, Bandar Sunway, Malaysia
3 Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
4 Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia
Serdang, Selangor, Malaysia
5 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia, Serdang, Selangor, Malaysia


FULL TEXT  


Aim. Predictive capability of response surface methodology (RSM) and artificial neural network (ANN) in modeling growth of recombinant Escherichia coli (E. coli) and production of periplasmic interferon-α2b (PrIFN)-α2b was compared.
Methods. The effect of potassium phosphate buffer at different pH and strengths, and EDTA concentration against the production of PrIFN-α2b by E. coli were simulated using RSM and ANN. A central composite design (CCD) and multilayered feed-forward (MFF) incremental propagation algorithm of ANN were developed to predict the three variables.
Results. In the validation results, the maximum cell growth (5.52 g/L) and production of PrIFN-α2b (121.4 ng/mL) using RSM model were obtained at pH 7.13, 0.1 M phosphate buffer and EDTA concentration of 0.047 mM. On the other hand, the optimized condition derived by ANN model (dry cell weight of 5.43 g/L and PrIFN-α2b production of 130.5 ng/mL) was obtained at pH 7.00, 0.124 M phosphate buffer and EDTA concentration of 0.07 mM.
Conclusion. The results indicated that ANN had better accuracy and predictive capability as compared to RSM for the nonlinear behavior of data sets. The final optimized medium was 30% higher as compared to non-optimized phosphate buffer medium in shake flask culture.

top of page

Publication History

Cite this article as

Corresponding author e-mail