Home > Journals > Minerva Anestesiologica > Past Issues > Minerva Anestesiologica 2015 January;81(1) > Minerva Anestesiologica 2015 January;81(1):65-75

CURRENT ISSUE
 

ARTICLE TOOLS

Reprints
Cite this article as

MINERVA ANESTESIOLOGICA

A Journal on Anesthesiology, Resuscitation, Analgesia and Intensive Care


Official Journal of the Italian Society of Anesthesiology, Analgesia, Resuscitation and Intensive Care
Indexed/Abstracted in: Current Contents/Clinical Medicine, EMBASE, PubMed/MEDLINE, Science Citation Index Expanded (SciSearch), Scopus
Impact Factor 2,623


eTOC

 

REVIEWS  FREEfree


Minerva Anestesiologica 2015 January;81(1):65-75

Copyright © 2015 EDIZIONI MINERVA MEDICA

language: English

Coagulopathy induced by acidosis, hypothermia and hypocalcaemia in severe bleeding

De Robertis E. 1, Kozek-Langenecker S. A. 2, Tufano R. 1, Romano G. M. 1, Piazza O. 3, Zito Marinosci G. 1

1 Department of Neurosciences, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy; 2 Department of Anesthesia and Intensive Care, Evangelical Hospital Vienna, Vienna, Austria; 3 Department of Medicine and Surgery, University of Salerno, Salerno, Italy


FULL TEXT  


Acidosis, hypothermia and hypocalcaemia are determinants for morbidity and mortality during massive hemorrhages. However, precise pathological mechanisms of these environmental factors and their potential additive or synergistic anticoagulant and/or antiplatelet effects are not fully elucidated and are at least in part controversial. Best available evidences from experimental trials indicate that acidosis and hypothermia progressively impair platelet aggregability and clot formation. Considering the cell-based model of coagulation physiology, hypothermia predominantly prolongs the initiation phase, while acidosis prolongs the propagation phase of thrombin generation. Acidosis increases fibrinogen breakdown while hypothermia impairs its synthesis. Acidosis and hypothermia have additive effects. The effect of hypocalcaemia on coagulopathy is less investigated but it appears that below the cut-off of 0.9 mmol/L, several enzymatic steps in the plasmatic coagulation system are blocked while above that cut-off effects remain without clinical sequalae. The impact of environmental factor on hemostasis is underestimated in clinical practice due to our current practice of using routine coagulation laboratory tests such as partial thromboplastin time or prothrombin time, which are performed at standardized test temperature, after pH correction, and upon recalcification. Temperature-adjustments are feasible in viscoelastic point-of-care tests such as thrombelastography and thromboelastometry which may permit quantification of hypothermia-induced coagulopathy. Rewarming hypothermic bleeding patients is highly recommended because it improves patient outcome. Despite the absence of high-quality evidence, calcium supplementation is clinical routine in bleeding management. Buffer administration may not reverse acidosis-induced coagulopathy but may be essential for the efficacy of coagulation factor concentrates such as recombinant activated factor VII.

top of page

Publication History

Cite this article as

De Robertis E, Kozek-Langenecker SA, Tufano R, Romano GM, Piazza O, Zito Marinosci G. Coagulopathy induced by acidosis, hypothermia and hypocalcaemia in severe bleeding. Minerva Anestesiol 2015 January;81(1):65-75. 

Corresponding author e-mail

ederober@unina.it