Home > Journals > Minerva Anestesiologica > Past Issues > Minerva Anestesiologica 2004 May;70(5) > Minerva Anestesiologica 2004 May;70(5):293-7

CURRENT ISSUE
 

ARTICLE TOOLS

Reprints

MINERVA ANESTESIOLOGICA

A Journal on Anesthesiology, Resuscitation, Analgesia and Intensive Care


Official Journal of the Italian Society of Anesthesiology, Analgesia, Resuscitation and Intensive Care
Indexed/Abstracted in: Current Contents/Clinical Medicine, EMBASE, PubMed/MEDLINE, Science Citation Index Expanded (SciSearch), Scopus
Impact Factor 2,036


eTOC

 

ANESTHESIA  SMART 2004 - Milan, May 12-14, 2004


Minerva Anestesiologica 2004 May;70(5):293-7

language: English

Auditory evoked potentials

De Cosmo G., Aceto P., Clemente A., Congedo E.

Department of Anaesthesiology and Intensive Care Catholic University of the Sacred Heart, Rome, Italy


FULL TEXT  


Auditory evoked potentials (AEPs) are an electrical manifestation of the brain response to an auditory stimulus. Mid-latency auditory evoked potentials (MLAEPs) and the coherent frequency of the AEP are the most promising for monitoring depth of anaesthesia. MLAEPs show graded changes with increasing anaesthetic concentration over the clinical concentration range. The latencies of Pa and Nb lengthen and their amplitudes reduce. These changes in features of waveform are similar with both inhaled and intravenous anaesthetics. Changes in latency of Pa and Nb waves are highly correlated to a transition from awake to loss of consciousness. MLAEPs recording may also provide information about cerebral processing of the auditory input, probably because it reflects activity in the temporal lobe/primary cortex, sites involved in sounds elaboration and in a complex mechanism of implicit (non declarative) memory processing. The coherent frequency has found to be disrupted by the anaesthetics as well as to be implicated in attentional mechanism. These results support the concept that the AEPs reflects the balance between the arousal effects of surgical stimulation and the depressant effects of anaesthetics. However, AEPs aren’t a perfect measure of anaesthesia depth. They can’t predict patients movements during surgery and the signal may be affected by muscle artefacts, diathermy and other electrical operating theatre interferences. In conclusion, once reliability of the AEPs recording became proved and the signal acquisition improved it is likely to became a routine feature of clinical anaesthetic practice.

top of page

Publication History

Cite this article as

Corresponding author e-mail