ARTICLE TOOLS Reprints

# GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE

## A Journal on Internal Medicine and Pharmacology

Indexed/Abstracted in: BIOSIS Previews, EMBASE, Scopus, Emerging Sources Citation Index

ORIGINAL ARTICLES

# Gazzetta Medica Italiana Archivio per le Scienze Mediche 2013 July-August;172(7-8):603-10

language: English

#### Oxygen uptake slow component at submaximal swimming

Reis V. M. 1, 2, Santos E. L. 3, Oliveira D. R. 1, 2, Goncalves L. F. 2, Carneiro a. L. 4, Fernandes R. J. 5

1 Research Centre for Sport Health & Human Development (CIDESD), Vila Real, Portugal;
2 University of Trás-os-Montes & Alto Douro Vila Real, Portugal;
3 Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro, Brazil;
4 Montes Claros State University Montes Claros, Brazil;
5 Centre of Research, Education Innovation and Intervention in Sport (CIFI2D) Faculty of Sport, University of Porto Porto, Portugal

Aim: The present study analyzed the oxygen uptake slow component of front crawl swimmers during four different intensities of sub maximal exercise, using a multi-exponential function.
Methods: Slow component was also assessed with two different fixed interval methods and the three methods were compared. Sixteen male swimmers performed a test comprising four sub maximal 400-m bouts at different intensities where all expired gases were collected breath by breath.
Results: Multi-exponential modeling showed that the slow component was below 200 mL∙min-1 in the four swimming intensities. Differences were observed in mean values of slow component obtained by the mathematical modeling and the two fixed interval methods in every bout of exercise with higher mean values when the mathematical modeling was used (F=7,337; P=0.007; η2=0,512). There was also a significant effect of the exercise intensity on the slow component (F=10,768; P=0.001; η2=0,713), although no effect of the interaction method x intensity was present (F=1,107; P=0.422; η2=0,399).
Conclusion: It was concluded that in trained crawl swimmers it is possible to have small slow component even at exercise intensities above that corresponding to the 4 mM-1 threshold. Moreover, the mathematical modeling of the oxygen uptake on-kinetics tends to show higher slow component as compared to fixed interval methods.

top of page